Einstein’s waves win Nobel Prize in physics

Einstein’s waves win Nobel Prize in physics
By Paul Rincon and Jonathan Amos
BBC Science News , 3 October 2017 , From the section Science & Environment

Nobel laureates in physics 2017Image copyright PA
Image captionWeiss (L) takes half the prize; Thorne (C) and Barish (R) share the other half

The 2017 Nobel prize in physics has been awarded to three US scientists for the detection of gravitational waves.

Rainer Weiss, Kip Thorne and Barry Barish will share the nine million kronor (£831,000) prize.

The ripples were predicted by Albert Einstein and are a fundamental consequence of his General Theory of Relativity.

The winners are members of the Ligo-Virgo observatories, which were responsible for the breakthrough.

The winners join a prestigious list of 204 other Physics laureates recognised since 1901.

Prof Weiss gets half of the prize money, while Barish and Thorne will share the other half.

Gravitational waves describe the stretching and squeezing of space-time that occurs when massive objects accelerate.

The warping of space resulting from the merger of two black holes was initially picked up by the US Ligo laboratory in 2015 – the culmination of a decades-long quest.

Three more examples have been detected since then.


Gravitational waves – Ripples in the fabric of space-time

Black hole artworkImage copyrightIGO/CALTECH/MIT/SONOMA STATE
Image captionArtwork: Two coalescing black holes spinning in a non-aligned fashion
  • Gravitational waves are a prediction of the Theory of General Relativity
  • It took decades to develop the technology to directly detect them
  • They are ripples in the fabric of space-time generated by violent events
  • Accelerating masses will produce waves that propagate at the speed of light
  • Detectable sources ought to include merging black holes and neutron stars
  • Ligo/Virgo fire lasers into long, L-shaped tunnels; the waves disturb the light
  • Detecting the waves opens up the Universe to completely new investigations

Speaking at a press conference, Olga Botner, from the Royal Swedish Academy of Sciences, said: “The first ever observation of a gravitational wave was a milestone – a window on the Universe.”

The US Ligo and European Virgo laboratories were built to detect the very subtle signal produced by these waves.

Even though they are produced by colossal phenomena, such as black holes merging, Einstein himself thought the effect might simply be too small to register by technology.

But the three new laureates led the development of a laser-based system that could reach the sensitivity required to bag a detection.

The result was Ligo, a pair of widely separated facilities in North America: one observatory is based in Washington State, while the other is in Livingston, Louisiana.

The European side of the gravitational wave collaboration is based in Pisa, Italy. On 14 August this year, just after coming online, it sensed the most recent of the four gravitational wave events.

Speaking over the phone at the Nobel announcement in Stockholm, Rainer Weiss said the discovery was the work of about 1,000 people.

He explained: “It’s a dedicated effort that’s been going on for – I hate to tell you – it’s as long as 40 years, of people thinking about this, trying to make a detection and sometimes failing in the early days, then slowly but surely getting the technology together to do it. It’s very, very exciting that it worked out in the end.”

Nonetheless, the Nobel trio’s contribution is also regarded as fundamental.

Weiss set out the strategy that would be needed to make a detection.

Thorne did much of the theoretical work that underpinned the quest.

And Barish, who took over as the second director of Ligo in 1994, is credited with driving through organisational reforms and technology choices that would ultimately prove pivotal in the mission’s success.

SimulationImage copyrightS.OSSOKINE/A.BUONANNO (MPI GRAVITATIONAL PHYSICS)
Image captionA computer simulation of gravitational waves radiating from two merging black holes

The Astronomer Royal, Sir Martin Rees, said the three leaders honoured by the Nobel Committee were “outstanding individuals whose contributions were distinctive and complementary”.

But he added: “Of course, Ligo’s success was owed to literally hundreds of dedicated scientists and engineers. The fact that the Nobel committee refuses to make group awards is causing them increasingly frequent problems – and giving a misleading and unfair impression of how a lot of science is actually done.”

Many commentators had gravitational waves down as a dead cert to win last year, but the Nobel committee has always been fiercely independent in its choices and has made everyone wait 12 months.

Had the prize been awarded last year, it is very likely that the Scottish physicist Ron Drever would have shared it with Weiss and Thorne.

The trio won all the big science prizes – apart from the Nobel – in the immediate aftermath of the first detection in 2015.

But Drever died in March this year and Nobels are generally not awarded posthumously.

The Scotsman developed some of the early laser systems at Glasgow University before taking this knowledge to Caltech in California, which manages the Washington State Ligo facility.

Glasgow remains the UK hub for the big British contribution to Ligo. Its Institute for Gravitational Research designed and built the suspension system that holds the ultra-still mirrors used in the US and Italian labs.

Catherine O’Riordan, interim co-chief executive of the American Institute of Physics (AIP), said: “Weiss, Barish and Thorne led us to the first detection of gravitational waves and laid the foundation for the new and exciting era we officially entered on September 14, 2015 – the era of gravity wave astronomy.”

This is actually the second Nobel prize to involve gravitational waves. In 1993, Americans Russell Alan Hulse and Joseph Hooton Taylor were awarded the physics prize for work that provided indirect evidence for the warping of space.

line break

Previous winners of the Nobel Prize in physics

2016 – David Thouless, Duncan Haldane and Michael Kosterlitz shared the award for their work on rare phases of matter.

2015 – Takaaki Kajita and Arthur McDonald were awarded the prize the discovery that neutrinos switch between different “flavours”.

2014 – Isamu Akasaki, Hiroshi Amano and Shuji Nakamura won the physics Nobel for developing the first blue light-emitting diodes (LEDs).

2013 – Francois Englert and Peter Higgs shared the spoils for formulating the theory of the Higgs boson particle.

2012 – Serge Haroche and David J Wineland were awarded the prize for their work with light and matter.

2011 – The discovery that the expansion of the Universe was acceleratingearned Saul Perlmutter, Brian P Schmidt and Adam Riess the physics prize.

2010 – Andre Geim and Konstantin Novoselov were awarded the prize for their discovery of the “wonder material” graphene.

line break

Follow Paul and Jonathan on Twitter.

Nobel Prize Awarded for Sensational Gravitational Waves Discovery

Nobel Prize Awarded for Sensational Gravitational Waves Discovery
By Megan Gannon, Live Science Contributor | October 3, 2017 09:10am ET

BERLIN — As expected by many, the 2017 Nobel Prize in physics went to three scientists who helped detect gravitational waves, ripples in space-time predicted by Einstein.

“This year’s prize is about a discovery that shook the world,” physicist Thors Hans Hansson said when announcing the winners from Stockholm.

Half of the 9 million Swedish krona ($1.1 million) award will go to Rainer Weiss of MIT. The other half will go jointly to Barry Barish and Kip Thorne of Caltech. All three were founders of the Laser Interferometer Gravitational-Wave Observatory, or LIGO, which detected gravitational waves for the first time in 2015.

  • MORE
Partner Series

BERLIN — As expected by many, the 2017 Nobel Prize in physics went to three scientists who helped detect gravitational waves, ripples in space-time predicted by Einstein.

“This year’s prize is about a discovery that shook the world,” physicist Thors Hans Hansson said when announcing the winners from Stockholm.

Half of the 9 million Swedish krona ($1.1 million) award will go to Rainer Weiss of MIT. The other half will go jointly to Barry Barish and Kip Thorne of Caltech. All three were founders of the Laser Interferometer Gravitational-Wave Observatory, or LIGO, which detected gravitational waves for the first time in 2015.

https://www.space.com/38347-3-scientists-win-nobel-in-physics-for-detecting-gravitational-waves.html
Moving masses generate waves of gravitational radiation that stretch and squeeze space-time. <a href="http://www.space.com/25089-how-gravitational-waves-work-infographic.html">See how gravitational waves work in this Space.com infographic</a>.

Moving masses generate waves of gravitational radiation that stretch and squeeze space-time. See how gravitational waves work in this Space.com infographic.

Credit: By Karl Tate, Infographics Artist

Albert Einstein had theorized that space-time can be stretched and compressed by collisions of massive objects in the universe. However, experimental proof for such events eluded scientists for 100 years. [The 18 Biggest Unsolved Mysteries in Physics]

On Sept. 14, 2015, LIGO’s two extremely sensitive instruments in Washington state and Louisiana simultaneously observed a faint gravitational-wave signal. The ripples in space-time came from a pair of two massive black holes that spiraled into each other 1.3 billion years ago.

It took scientists such a long time to arrive at the discovery because gravitational waves — even though they come from violent, powerful collisions — are extremely small once they reach Earth.

During the event detected in September 2015, scientists think that about three times the mass of the sun was transformed into gravitational waves in less than a second. [How Gravitational Waves Work (Infographic)]

The L-shaped LIGO detectors have two arms, each 2.48 miles (4 kilometers) long, with identical laser beams inside. If a gravitational wave passes through Earth, the laser in one arm of the detector will be compressed and the other will expand. But the changes are tiny— as tiny as one-thousandth of a diameter of a nucleon, said Walter Winkler, a physicist with the Max Planck Institute for Gravitational Physics in Hannover, Germany.

“You have first to keep all the distortions out and then to increase the sensitivity of the measurement system,” Winkler, who has worked on gravitational-wave detection since the 1970s, told Live Science. “It took thousands of people to come to this. It’s really a new sort of astronomy.”

The Nobel Committee acknowledged that the discovery was a huge collaborative effort. The paper announcing the September 2015 detection had more than 1,000 authors. But, according to the Nobel rules, the prize can be shared by no more than three scientists.

“Without them the discovery would not have happened,” Nils Mårtensson, chairman of the Nobel Committee for Physics, said of the three winners at the news conference in Stockholm.

Using laser beams, scientists have detected the physical distortions caused by passing gravitational waves. <a href="http://www.space.com/25445-how-ligo-lasers-hunt-gravitational-waves-infographic.html">See how the LIGO observatory hunts gravitational waves in this Space.com infographic</a>.

Using laser beams, scientists have detected the physical distortions caused by passing gravitational waves. See how the LIGO observatory hunts gravitational waves in this Space.com infographic.

Credit: By Karl Tate, Infographics Artist

Scientists here at the German Physical Society (DPG) cheered the results.

“I had really hoped for it because it’s a fantastic discovery,” DPG President Rolf-Dieter Heuer told Live Science. He added that the detection of gravitational waves opens “a window into an unseen world that will bring us more information in the future about the universe.”

The findings might seem esoteric, but Heuer said that it’s difficult to predict when and in which field this research could have practical applications. He noted that it took more than 40 years for the discovery of antimatter to be used in positron emission tomography, or PET, scans common in hospitals today.

Some had expected the LIGO team to win the prize last year. But Gunnar Ingelman, secretary of the Nobel Committee and a professor of subatomic physics at Uppsala University in Sweden, said the detection of gravitational waves was not eligible last year. According to the rules of the committee, the discovery has to be published the year before the awards are announced. (The LIGO detection was published in February 2016.)

The LIGO team has made several additional discoveries. Just last week, LIGO scientists announced they had detected gravitational waves for the fourth time, on Aug. 14, 2017. The ripples were also detected by another instrument called VIRGO, near Pisa, Italy.

“In the early days, it was not clear if these gravitational waves were real or could be observed,” Ingelman told reporters here by video. “It was an enormous effort to reach the sensitivity to build a detector which could actually observe such tiny, tiny distortions.”

Originally published on Live Science.